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Abstract
We determine the location of the expansion points with respect to which the two
Maxwell’s multipole vectors of the quadrupole moment and the dipole vector of
a distribution of charge form an orthogonal trihedron. We find that with respect
to these ‘orthogonality centres’ both the dipole and the quadrupole moments
are each characterized by a single real parameter. We further show that the
orthogonality centres coincide with the stationary points of the magnitude of
the quadrupole moment and, therefore, they can be seen as an extension of
the concept of centre of the dipole moment of a neutral system introduced
previously in the literature. The nature of the stationary points then provides
the means for the classification of a distribution of charge in two different
categories.

PACS numbers: 02.30.Em, 02.30.Mv, 33.15.Kr

1. Introduction

The multipole expansion [1] is a useful tool for the representation of various fields
(electromagnetic and gravitational for example) because it allows their resolution in terms
of a hierarchical set of symmetry features describing their sources. In most applications the
accent is placed on the characterization of the field rather than the source itself and therefore
the study of the multipole coefficients is limited to properties that directly relate to how they
affect the field. More recent studies however [2–5] show the relevance of these parameters for
the characterization of the spatial organization of the source of the field. Therefore, the study
of the geometric and symmetry properties of the multipole moments is an interesting problem
in itself.

There are two more common ways to discuss the multipolar representations and the
relationship between them is non-trivial beyond the lowest orders. In the Cartesian approach
the multipole moments are the coefficients of Taylor’s expansion of the electrostatic potential
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of a distribution of charge about a given point in space [1]. Due to symmetry properties
and the fact that the potential satisfies Laplace’s equation outside the region occupied by the
charge, the Cartesian multipole coefficients of a given expansion order form the components
of a totally symmetric and traceless tensor of a rank equal to the order of expansion. These
properties make the components of the tensor highly dependent. The enumeration of the
independent components is facilitated by the use of irreducible tensorial sets [6] in which the
moments are represented in terms of solid spherical harmonics. This second way of describing
the multipole moments corresponds to the original formalism of the potential theory developed
by Maxwell [7].

Besides providing the means for an irreducible representation, Maxwell’s approach has
the advantage of exposing geometrical features of the source of a field satisfying Laplace’s
equation. Indeed, Sylvester’s theorem [8, 9] shows that any spherical harmonic function
can be characterized by a set of unit vectors (Maxwell’s multipole vectors) and a general
scalar constant. These parameters are a direct characterization of the spatial organization
of the source of the field. The direction in space of Maxwell’s multipole vectors can then
be used to extract information about the spatial organization of the distribution of various
quantities. This is a common technique for the analysis of the level of anisotropy of the
cosmic microwave background [3, 4, 10], for example. In other research [2], such geometrical
features were implicitly used to define ‘canonical’ reference frames for the spatial registration
of the biological molecules. Our own interest in these aspects emerged from the need for
alternative parameterization of the physicochemical properties of large protein structures [5].
This convergence of applications towards geometrical interpretation of the multipole moments
motivated us towards the analysis presented in this paper.

To introduce the concepts used throughout the paper, we will consider for the sake of
simplicity a discrete system of point-like particles. The results can be straightforwardly
extended to the continuous case. The spherical multipole moments of such a system, qlm,
are the coefficients of the expansion of the scalar potential in terms of spherical harmonic
functions [1] at large distances from the source

�(�r) =
∞∑
l=0

l∑
m=−l

1

2l + 1

qlm

rl+1
Ylm(r̂), (1)

and are given by the expression

qlm =
N∑

i=1

eir
l
i Y

∗
lm(r̂). (2)

The summation runs over all N particles in the system and ei denotes the scalar property of
interest which, for concreteness, will be named charge throughout the paper. In equations (1)
and (2) r stands for the length and r̂ for the direction (equivalent to a pair of spherical angular
coordinates θ, φ) of a position vector.

Up to a distance-dependent factor, the sum over m in equation (1) can be expressed as a
homogeneous polynomial of order l in the three Cartesian components x, y, z of the vector �r .
Therefore, it satisfies Sylvester’s theorem [8, 11] which provides a representation in terms of
the l Maxwell’s multipole vectors and a constant factor [7, 9] in the form

rl

l∑
m=−l

qlmYlm(r̂) = C(û1 · �r) · · · (ûl · �r) + r2F . (3)

Maxwell’s unit vectors ûi are defined up to an inversion since the sign can be absorbed in
the value of the constant C (they are headless vectors). Within this paper we will make the
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assumption that the signs are chosen such that the overall constant is positive. The function
F is a homogeneous polynomial of degree l − 2 in x, y, z and is completely determined
by the same set of unit vectors ûi . Then, equation (3) shows that there exists a one-to-one
correspondence between the spherical multipoles qlm on one hand, and the constant C and
the set of Maxwell’s multipole vectors on the other hand. Maxwell’s unit vectors ûi and the
constant C provide therefore a geometrical description of the source of the field. Throughout
this paper we will refer to the vectors ûi with the term Maxwell’s multipole vectors or just
multipole vectors when no confusion may arise.

The set of multipole coefficients of a given rank {qlm}m=−l···l form irreducible tensorial
sets [6] and therefore they behave as vectors of various dimensions under rotations of the three-
dimensional physical space. They are however sensitive to translations and, accordingly, so
do their associated Maxwell’s multipole vectors. It is meaningful therefore to ask: how
does the relative orientation of the multipole vectors depend on the location of the origin of
coordinates? While the problem deserves a more general analysis in the context of multipoles
of arbitrary order, here we will only focus on the lowest non-trivial orders, i.e. on the relative
orientation of Maxwell’s dipole and quadrupole moments. More specifically we will define
the conditions of orthogonality of the three multipole vectors.

We would like to note that the question we study here is a particular aspect of the more
general problem of the translational properties of the multipole moments [2, 12–15]. To our
best knowledge, no study exists that approaches these properties in the context of Maxwell’s
vector representation of the multipole moments (either in electrostatic or a more general
context).

The organization of the paper is as follows. In section 2 we derive the expansion points
with respect to which the dipole and quadrupole multipoles form an orthogonal trihedron
(orthogonality centres). We also show that, with respect to the orthogonality centres, the
quadrupole and dipole moments each can be characterized by a single real parameter. In
section 3 we outline a method to construct the orthogonal trihedron of the quadrupole and
dipole Maxwell’s multipole vectors. In section 4 we show that the orthogonality centres
are stationary points of the magnitude of the quadrupole moment and discuss their nature.
Section 5 concludes the paper.

2. The orthogonality centers

The relative orientation of the two multipole vectors of the quadrupole moment, as well as
the relative orientation between any of these vectors and the dipole vector change under the
translation of the origin of the reference frame but are invariant with respect to rotations. In
general, the angle between two multipole vectors can take any value. In particular, it can be
expected that, with respect to certain expansion points, orthogonality between various pairs
of multipole vectors, considered independently, can be achieved. There will be however at
most three multipole vectors that can be simultaneously pairwise orthogonal, since all vectors
reside in the three-dimensional physical space. We will call such an expansion point with
respect to which this condition is satisfied an orthogonality centre.

From a simple count of unknowns and equations we can anticipate that points with
this property exist. Indeed, there are three independent translation coordinates and three
orthogonality conditions. This leads to a set of three constraints for three unknowns which
can, at least in principle, be satisfied by an appropriate three-dimensional translation.

Solving the system of constraints defined above can be in principle done directly using
one of the methods for derivation of Maxwell’s multipoles [4, 9, 16] and then imposing the
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orthogonality conditions. This is however a laborious path and here we will use instead an
indirect approach.

The relative directions of the three unit vectors of the dipole and quadrupole moments
are conveniently represented by three scalar products. As rotational invariants, these scalar
products should serve as building blocks for the functional representation of various invariant
quantities that can be formed with the dipole and quadrupole moments. By examining these
invariants, we will identify the equations that need to be satisfied by the dipole and quadrupole
moments, when calculated with respect to the orthogonality centre, so that the orthogonality
conditions of their multipole vectors hold.

Since the desired orthogonality conditions involve both dipole and quadrupole moments,
we will seek invariants involving both sets of coefficients. Constructing such invariants is
governed by the general theory of irreducible tensor operators [17, 18]. The lowest rank
tensor resulting from the coupling of the quadrupole (rank 2) and dipole (rank 1) moments is
a regular three-dimensional (rank 1) vector. The components of this vector are

aµ = [q2×q1]1µ, (4)

where the symbol [· · · × · · ·] stands for tensor coupling and q2 and q1 denote respectively the
sets of components of the quadrupole and dipole moments. The index µ takes one of the three
values denoting the spherical components of the vectors, i.e. −1, 0, +1.

The components aµ can be expressed in terms of individual components of the coupled
tensors using the appropriate Clebsch–Gordan coefficients [17, 18] C211

µ2µ1µ
as

aµ =
2∑

µ2=−2

1∑
µ1=−1

C211
µ2µ1µ

q2µ2q1µ1 . (5)

The coefficients C211
µ2µ1µ

are readily available in textbooks [17] or can be calculated with a
scientific software [19]. After substituting their values, the set of equations (5) becomes

are
11 =

√
3
10

(
qre

22px − q im
22 py − qre

21pz − 1√
6
q20px

)
, (6)

aim
11 =

√
3

10

(
q im

22 px + qre
22py − q im

21 pz + 1√
6
q20py

)
, (7)

a10 =
√

3
5

(
qre

21px − q im
21 py −

√
2
3q20pz

)
. (8)

For convenience, in these equations the components of the quadrupole and of the resulting
vector a are expressed in terms of their real and imaginary parts, and the dipole components
are converted to their Cartesian form defined by px = −√

2qre
11, py = √

2q im
11 , pz = q10.

To derive the functional form of vector a in terms of Maxwell’s multipole vectors, we
use equation (15) of [4] to express the quadrupole moments in terms of their multipole
unit vectors. To avoid unnecessary clutter, we do not enforce the normalization of Maxwell’s
vectors. Instead, we assume that the general multiplication constant in equation (3) is absorbed
symmetrically in the vectors defining the multipole moments. When applied to quadrupole
moments, the equations read

qre
22 =

√
3

40π
(u1xu2x − u1yu2y), (9)

q im
22 = −

√
3

40π
(u1xu2y + u1yu2x), (10)
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qre
21 = −

√
3

40π
(u1xu1z + u1zu2x), (11)

q im
21 =

√
3

40π
(u1yu1z + u1zu2y), (12)

q20 =
√

1

5π
u1zu2z −

√
1

20π
(u1xu2x + u1yu2y). (13)

Maxwell’s multipole unit vector for the dipole moment coincides with its direction. The only
invariant associated with vector a is its length. After substituting the above expressions for the
components of the quadrupole moment in equations (6)–(8), the length of vector a becomes

‖a‖2 = 2
(
are

11

)2
+ 2

(
aim

11

)2
+ a2

20 (14)

= 1

200π

[
9u2

1(�p · �u2) + 9u2
2(�p · �u1) + 4p2(�u1 · �u2) − 6(�u1 · �u2)(�p · �u1)(�p · �u1)

]
. (15)

Equation (15) shows that the orthogonality conditions �u1 · �u2 = �u1 · �p = �u2 · �p = 0
require that the length of vector a is zero. From equation (14) it then follows that

are
11 = aim

11 = a20 = 0. (16)

This is the implicit form of the necessary set of equations that need to be satisfied by the
quadrupole and dipole multipole vectors so that they form a set of three orthogonal directions.

Equations (9)–(13) can also be exploited to extract the angle between the quadrupole
multipole vectors. By calculating the magnitude of the quadrupole vector ‖q2‖2 =
[q2×q2]00 = ∑

m q∗
2mq2m, we find

(�u1 · �u2)
2 = 20π‖q2‖2 − 3u2

1u
2
2. (17)

Then, used together, equations (14), (15) and (17) provide means for further analysis of
the relative orientation of any pair of the three Maxwell’s multipole vectors in terms of the
quadrupole and dipole components.

A more meaningful form of equation (16) results when these conditions are expressed in
terms of the quadrupole Cartesian components. Then the set of equations (16) becomes

Q�p = 0. (18)

The matrix Q represents, up to a factor of 1/3, the traceless Cartesian quadrupole tensor
defined by

Q = S − (1/3) Tr(S)13, (19)

Sαβ =
N∑

i=1

eiriαriβ, (20)

where 13 is the identity matrix in the three-dimensional space and riα denotes the three
Cartesian components of the position vector of particle i. For the derivation of equation (18),
the spherical quadrupole moments were expressed in terms of their Cartesian components
as [1] q20 = 3/4

√
5/πQ33, qre

21 = −1/2
√

15/2πQ13, q im
21 = 1/2

√
15/2πQ23, qre

22 =
1/2

√
15/2π(Q11 + 1/2Q33), q im

22 = −1/2
√

15/2πQ12.
Equation (18) shows that, with respect to an orthogonality centre, the dipole moment

needs to be an eigenvector of the matrix of the quadrupole tensor corresponding to a zero
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eigenvalue. When the dependence on the expansion centre is made explicit, this equation will
determine the origin with respect to which the orthogonality conditions are satisfied.

Note that equation (18) also implies that, with respect to an orthogonality centre, both
the quadrupole and the dipole moments are each characterized by a single real parameter.
Indeed, since the Cartesian quadrupole matrix is traceless and one of its eigenvalues vanishes,
the remaining eigenvalues are equal in absolute value and of opposite sign. Then, their
common absolute value is sufficient to characterize the quadrupole moment. In particular,
the magnitude of the quadrupole moment is proportional to this parameter. At the same time,
the dipole moment has a direction implied by its orientation along the eigenvector of null
eigenvalue. Thus, the only parameter needed to fully describe the dipole is its magnitude.

Before further exploring the result, let us note that equation (18) coincides formally with
the equation of the ‘centre of the dipole moment’ as defined in [2, 20]. In that context, a
neutral system is assumed. For neutral systems, the centre of the charge is not defined and
the dipole moment is invariant with respect to the expansion centre [1]. In the absence of
a centre of charge, a ‘centre of the dipole moment’ is sought to serve as a standard origin
for a multipolar representation. The ‘centre of the dipole moment’ is defined in [2] from a
condition of ‘minimal quadrupole contribution’ to the electrostatic potential. We see here that
the ‘centre of the dipole moment’ has also a geometric interpretation of representing the point
where the three multipole vectors, one for the dipole and two for the quadrupole moment,
form an orthogonal trihedron. Since the dipole moment �p does not depend on the centre of
expansion in this case, and the net charge of the system is zero (which removes terms quadratic
in the translation vector in the Cartesian quadrupole as will be shown below), equation (18)
is linear in the position of the expansion centre and therefore it yields a unique ‘centre of the
dipole’. We consider in this paper the general case of a non-neutral system, and, as we will
see later, this leads to a more complex equation for the centre(s) of orthogonality. Since the
(unique) centre of orthogonality coincides in the neutral case with the ‘centre of the dipole
moment’, and since this quantity is derived in detail in [2], we will not discuss this particular
case here.

The dependence of the spherical quadrupole moments on the centre of expansion can be
made explicit from their laws of transformation under translation. General equations exist
for arbitrary orders (see for example [12]). For our purpose, it is more convenient to use
instead the obvious transformation of the Cartesian quadrupole and dipole moments, which
requires the substitutions Sαβ → Sαβ − rαPβ − rβPα + qrαrβ , and �p → �P − q�r . The vector
�r = (x, y, z) is the position of the centre of expansion, �P = ∑N

i=1 ei�ri is the dipole moment
vector with respect to the original (arbitrary) origin and q is the total charge of the system.
Then, with respect to an arbitrary origin, the spherical quadrupole moments are expressed as

qre
22 = 1

4

√
15

2π
(Sxx − Syy − 2xPx + 2yPy + qx2 − qy2), (21)

q im
22 = −1

2

√
15

2π
(Sxy − xPy − yPx + qxy), (22)

qre
21 = −1

2

√
15

2π
(Sxz − xPz − zPx + qxz), (23)

q im
21 = 1

2

√
15

2π
(Syz − yPz − zPy + qyz), (24)

q20 = 1

2

√
5

4π
(3Szz − Tr(S) − 6zPz + 2�r · �P + 3qz2 − qr2). (25)
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Substituting all these results back in equations (6)–(8) and then using equation (16), we arrive
at the desired equation for the centre of orthogonality. It is convenient to express the result
in terms of the position of the orthogonality centre with respect to the centre of charge, i.e.
in terms of the vector �R = �r − �P/q, because this vector is invariant to translation (as the
direction between two points rigidly tied to the structure). Hence, the equation reads(

D − 1
3 Tr(D)13

) �R = − 2
3qR2 �R, (26)

with D being the matrix

D = S − 1

q
�P �P. (27)

Alternatively, this result could have been obtained directly from equation (18) with the
transformation outlined above for the Cartesian quadrupole and dipole moments.

We note that the second term in equation (27) represents, up to a constant, the direct
product of the centre of the charge, �P/q, with itself. For a charged system (q �= 0) this
quantity is always defined and by shifting the origin of the calculation at this location, the term
disappears from equation. This leads to

Qc
�R = − 2

3qR2 �R, (28)

where Qc is 1/3 of the traceless quadrupole tensor with respect to the centre of charge.
Equation (28) has the appearance of an eigenvector–eigenvalue problem with −(2/3)qR2

playing the role of the eigenvalue. Obviously, equation (28) admits the trivial solution �R = 0.
This solution represents the centre of charge where ‖a‖2 = 0 because the dipole moment
vanishes at that location, and therefore it does not represent a real orthogonality centre.

To further discuss equation (28), let us assume that the net charge is positive. For
nontrivial solutions, we need then to select from among the negative eigenvalues of the matrix
Qc. Since Qc is a three-dimensional traceless matrix, it has at least one and at most two
negative eigenvalues. Then, each negative eigenvalue determines two orthogonality centres
located oppositely with respect to the centre of charge along the direction of the corresponding
eigenvector. If λ is such a negative eigenvalue, then the coordinates of the two corresponding
orthogonality centres, �Roc, are

�Roc = ±
√

3λ/2v̂, (29)

where v̂ is the normalized eigenvector corresponding to eigenvalue λ.

3. The orthogonal trihedron of the multipole vectors

The construction of the orthogonal multipole trihedron at an orthogonality centre can be done
by directly calculating Maxwell’s multipole vectors of the dipole and quadrupole moments.
Calculating the dipole vector is trivial since it reduces to the position of the centre of charge
with respect to the orthogonality centre. For the calculation of the quadrupole multipole
vectors, a numerical scheme such as the ones described in [4, 9, 16] can be used.

Alternatively, Maxwell’s multipole vectors can be calculated from the eigenvectors of
the Cartesian quadrupole moment. According to equation (18), the dipole moment is the
eigenvector of the Cartesian tensor corresponding to the null eigenvalue. When calculated
with respect to an orthogonality centre the quadrupole multipole vectors are perpendicular to
the dipole, and therefore they reside in the plane of the other two eigenvectors of the Cartesian
quadrupole tensor, i.e. of the eigenvectors corresponding to the non-zero (one positive and one
negative) eigenvalues. This is a particular case of a more general property that the quadrupole
multipole vectors are always in the plane spanned by the two eigenvectors corresponding
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to the maximum and the minimum eigenvalues of the Cartesian quadrupole tensor. Indeed,
it has been shown [21] that these two eigenvectors can be obtained as the following linear
combinations:

â± = (û ± v̂)/‖û ± v̂‖, (30)

of the multipole vectors û, v̂. The two normalized eigenvectors â± correspond to the largest
and smallest eigenvalues

λ± = C

5

(
1

3
û · v̂ ± 1

)
. (31)

The third eigenvector is therefore perpendicular to the plane determined by û, v̂ and is
associated with an eigenvalue

λ0 = − C

15
û · v̂. (32)

The multipole vectors û, v̂ can be obtained by solving the system of equation (30). This
can be reduced to a linear system by observing that the denominator on the right-hand side
can be expressed in terms of û · v̂ only. This quantity and the constant C can be found
simultaneously by solving equations (31) and (32), and this leads to

C = 5

2
(λ+ − λ−), (33)

û · v̂ = − 3λ0

λ+ − λ−
. (34)

Then, if we define cos(α) = û · v̂, simple trigonometrical manipulations yield

‖û + v̂‖ = 2 cos(α/2), (35)

‖û − v̂‖ = 2 sin(α/2). (36)

The solution of equation (30) is then expressed as

û = â+ cos(α/2) + â− sin(α/2), (37)

v̂ = â+ cos(α/2) − â− sin(α/2). (38)

At the position of an orthogonality centre λ0 = 0 and, therefore, α = π/2. Then, the
multipole vectors are parallel to the two diagonals of the square formed by the eigenvectors
â±, i.e.

û = (1/
√

2)(â+ + â−), (39)

v̂ = (1/
√

2)(â+ − â−). (40)

4. Orthogonality centres as stationary points of the quadrupole moment

As discussed in section 2, equation (18) is formally equivalent to the equation defining the
centre of the dipole moment of a neutral system [2]. Since in that context the equation is
obtained from a condition of minimum of the magnitude of the quadrupole moment with
respect to translations, it is useful to explore to what extent that condition applies to this more
general case of a charged systems.
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The magnitude of the quadrupole moment relates to the Cartesian components as∑
m

|q2m|2 = 15

8π

∑
αβ

Q2
αβ. (41)

Under a translation of vector �r , the Cartesian components change as

Q′
αβ = Qαβ − rαpβ − rβpα + (2/3)�r · �pδαβ + qrαrβ − (1/3)qr2δαβ. (42)

The extremes of the magnitude of the quadrupole moment are reached when its gradient
vanishes. This requires

∂

∂rγ

∑
αβ

|Q′
αβ |2 =

∑
αβ

Q′
αβ

∂Q′
αβ

∂rγ

= 0, γ = 1, 2, 3. (43)

The derivatives of Q′
αβ can be easily calculated from equation (42) and they read

∂Q′
αβ

∂rγ

= −pβδαγ − pαδβγ +
2

3
pγ δαβ − 2

3
qrγ δαβ + qrαδβγ + qrβδαγ

= −(pβ − qrβ)δαγ − (pα − qrα)δβγ +
2

3
(pγ − qrγ )δαβ. (44)

The last term in equation (44) makes no contribution under the summation in equation (43)
because of the traceless character of the quadrupole matrix. The other two terms are
proportional to the components of the dipole moment at the translated point, p′

α . Substituting
these remaining terms back into equation (43) leads to Q′ �p′ = 0, i.e. the same equation
as (18).

To establish the nature of the stationary points, we calculate the Hessian of the squared
quadrupole magnitude at these points. The result can be easily interpreted if we use a system of
axes placed at the stationary point and with orientation along the eigenvectors of the Cartesian
quadrupole. This choice renders the Hessian diagonal and it now reads

H =




4
3p2 0 0

0 2
3 (p2 + qµ) 0

0 0 2
3 (p2 − qµ)


 , (45)

where µ and −µ are the only non-zero eigenvalues of the quadrupole tensor at the stationary
point and p represents the magnitude of the dipole moment at the same location. It is obvious
that at least two eigenvalues of the Hessian are positive. Therefore, the orthogonality centre
is either a minimum or a saddle point. The nature of the stationary point is determined by
the signs of the two diagonal elements p2 ± qµ. If p2 � |qµ|, both values are positive and
therefore the point is a point of minimum. In the alternative case, only one of the eigenvalues
is positive and therefore the point is a saddle point.

As shown earlier, the orthogonality centres come in pairs of points located symmetrically
from the centre of charge along each axis of negative eigenvalue. Only the magnitude of the
dipole moment appears in the Hessian (equation (45)), and therefore both centres in a given
pair have the same nature, either both of them are points of minimum or both of them are
saddle points. It is easy to establish that for a given system, there cannot be more than one
pair of minima. Indeed, the dipole moment with respect to a given orthogonality centre is
p2 = q2R2 = −(3/2)qλ1, where λ1 is a negative eigenvalue (with respect to the centre of
charge) with which the centre is associated. On the other hand, by using equation (42) to relate
translated eigenvalues, one finds that µ = ±(λ2 − qR2/3), the ± sign depending on which
of the two remaining eigenvalues is represented by λ2. Then, one can find that the condition
of minimum, p2 � |qµ|, requires λ1 � λ2 � −2λ1. One can see that the left side of the
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inequality cannot be satisfied when the role of the two eigenvalues is interchanged. Therefore,
even if both eigenvalues are negative and, therefore, they both have associated orthogonality
centres, only one of the pairs of centres forms minima, and that pair corresponds to the negative
eigenvalue of the maximum absolute value. The other pair is necessarily a saddle point.

Note that the right-hand side inequality is always satisfied due to the traceless property
satisfied by the three quadrupole eigenvalues. Assume the three eigenvalues are ordered as
λ1 � λ2 � λ3. Then, λ3 = −λ1 − λ2 � −λ1 − λ1 = −2λ1 and since λ3 is the maximum of
the three eigenvalues, this proves the property.

To summarize, the above analysis shows that there always exists a pair of orthogonality
centres which are at the same time points of minima of the quadrupole moment with
respect to translations. These orthogonality centres correspond to the negative eigenvalue
with maximum absolute value of the Cartesian quadrupole (with respect to the centre of
charge). When more than one negative eigenvalue exists, a second pair of orthogonality
centres exists and those centres are saddle points for the quadrupole moment. These two
categories of charge conformations can also be succinctly described by the two parameters
p—the dipole moment, and µ—the quadrupole moment corresponding to a point of minimum
of the quadrupole moment: for p2 � |qµ|, the quadrupole moment has two saddle points
with respect to the translation of the physical system, in addition to the two minima; for
p2 ∈ (min{−qµ, qµ}, max{−qµ, qµ}), there are no saddle points.

5. Conclusions

In this paper we show that there are locations in space (orthogonality centres) with respect to
which Maxwell’s vectors of the quadrupole and dipole moments form an orthogonal trihedron.
We prove that the orthogonality centres are located symmetrically along the principal axes of
negative eigenvalues of the Cartesian quadrupole matrix with respect to the centre of charge.
There are two orthogonality centres for each negative eigenvalue, and their distances to the
centre of charge are expressed in terms of the eigenvalues of the Cartesian quadrupole with
respect to the centre of charge.

With respect to an orthogonality centre, the quadrupole and dipole moments are each
characterized by a single parameter. The orthogonality centres represent stationary points of
the magnitude of the quadrupole moment with respect to three-dimensional translations. The
nature of the stationary points depends on the relative magnitude of the dipole and quadrupole
moments with respect to those points. Then, the three-dimensional landscape of a distribution
of charge can be characterized at the quadrupole level on the basis of the relative magnitude
of these parameters at the point of minimum of the quadrupole moment.

The relationship between the orthogonality centres and the stationary points of the
magnitude of the quadrupole moment suggests a possible path towards the extension of
the notion of centres to higher order multipoles. In general, such centres cannot be defined by
orthogonality properties since for arbitrary higher orders the number of Maxwell’s vectors
exceeds the dimensionality of the space. However, the condition of stationarity admits
generalization to any multipolar order. This path has been briefly explored before [2] as
a means to define the centre of the quadrupole moment for the particular case of a system with
zero net charge and zero overall electric dipole.
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